New solutions for managing waste have emerged due to the rise of Smart Cities and the Internet of Things. These solutions can also be applied in rural environments, but they require the deployment of a low cost and low consumption sensor network which can be used by different applications. Wireless technologies such as LoRa and low consumption microcontrollers, such as the SAM L21 family make the implementation and deployment of this kind of sensor network possible. This paper introduces a waste monitoring and management platform used in rural environments. A prototype of a low consumption wireless node is developed to obtain measurements of the weight, filling volume and temperature of a waste container. This monitoring allows the progressive filling data of every town container to be gathered and analysed as well as creating alerts in case of incidence. The platform features a module for optimising waste collection routes. This module dynamically generates routes from data obtained through the deployed nodes to save energy, time and consequently, costs. It also features a mobile application for the collection fleet which guides every driver through the best route—previously calculated for each journey. This paper presents a case study performed in the region of Salamanca to evaluate the efficiency and the viability of the system’s implementation. Data used for this case study come from open data sources, the report of the Castilla y León waste management plan and data from public tender procedures in the region of Salamanca. The results of the case study show a developed node with a great lifetime of operation, a large coverage with small deployment of antennas in the region, and a route optimization system which uses weight and volume measured by the node, and provides savings in cost, time and workforce compared to a static collection route approach.
Smart Waste Collection System with Low Consumption LoRaWAN Nodes and Route Optimization.
阅读:7
作者:Lozano Ãlvaro, Caridad Javier, De Paz Juan Francisco, Villarrubia González Gabriel, Bajo Javier
| 期刊: | Sensors | 影响因子: | 3.500 |
| 时间: | 2018 | 起止号: | 2018 May 8; 18(5):1465 |
| doi: | 10.3390/s18051465 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
