A semi-automated machine-learning based workflow for ellipsoid zone analysis in eyes with macular edema: SCORE2 pilot study.

阅读:4
作者:Etheridge Tyler, Dobson Ellen T A, Wiedenmann Marcel, Papudesu Chandana, Scott Ingrid U, Ip Michael S, Eliceiri Kevin W, Blodi Barbara A, Domalpally Amitha
BACKGROUND AND OBJECTIVE: To develop a semi-automated, machine-learning based workflow to evaluate the ellipsoid zone (EZ) assessed by spectral domain optical coherence tomography (SD-OCT) in eyes with macular edema secondary to central retinal or hemi-retinal vein occlusion in SCORE2 treated with anti-vascular endothelial growth factor agents. METHODS: SD-OCT macular volume scans of a randomly selected subset of 75 SCORE2 study eyes were converted to the Digital Imaging and Communications in Medicine (DICOM) format, and the EZ layer was segmented using nonproprietary software. Segmented layer coordinates were exported and used to generate en face EZ thickness maps. Within the central subfield, the area of EZ defect was measured using manual and semi-automated approaches via a customized workflow in the open-source data analytics platform, Konstanz Information Miner (KNIME). RESULTS: A total of 184 volume scans from 74 study eyes were analyzed. The mean±SD area of EZ defect was similar between manual (0.19±0.22 mm2) and semi-automated measurements (0.19±0.21 mm2, p = 0.93; intra-class correlation coefficient = 0.90; average bias = 0.01, 95% confidence interval of limits of agreement -0.18-0.20). CONCLUSIONS: A customized workflow generated via an open-source data analytics platform that applied machine-learning methods demonstrated reliable measurements of EZ area defect from en face thickness maps. The result of our semi-automated approach were comparable to manual measurements.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。