Autumn olive fruits are a rich source of nutrients and functional compounds, making them functional foods against many diseases and cancers. To increase the consumption, its processing, and its transformation into new products would help spread them to the consumer's table. In this study, after giving an overview of the physicochemical characteristics and the antioxidant activity, the objective was to optimize the osmotic dehydration (OD) of the berries. Response surface methodology was used to investigate the effect of dehydration factors: syrup concentration (30-70%), temperature (20-70 °C), and fruit-to-syrup ratio (1:10-2:10) on the water loss (WL), sugar gain (SG), weight reduction (WR), density (Ï), water activity (a(w)), and total color change (ÎE) of fruits after 10 h of OD. Results obtained by employing Box-Behnken design (three variables, three levels), and significant terms of regression equations indicated that the syrup concentration and temperature variation are the most affecting factors on the previously mentioned independent variables (WL SG, WR, Ï, a(w), and ÎE). Fruits to syrup ratio appeared to have a significant effect only on WL. Under the optimum conditions found (70%, 70 °C, 1.8:10), the predicted values were 59.21%. 19.21%, 32.34%, 1.22 g/cm(3), 0.850, and 3.65 for WL, SG, WR, Ï, a(w), and ÎE, respectively.
Optimization of Osmotic Dehydration of Autumn Olive Berries Using Response Surface Methodology.
阅读:3
作者:Ghellam Mohamed, Zannou Oscar, Pashazadeh Hojjat, Galanakis Charis M, Aldawoud Turki M S, Ibrahim Salam A, Koca Ilkay
| 期刊: | Foods | 影响因子: | 5.100 |
| 时间: | 2021 | 起止号: | 2021 May 13; 10(5):1075 |
| doi: | 10.3390/foods10051075 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
