Residual stresses are often imposed on the end-product due to mechanical and thermal loading during the machining process, influencing the distortion and fatigue life. This paper proposed an original semi-empirical method to predict the residual stress distribution along the depth direction. In the statistical model of the method, the bimodal Gaussian function was innovatively used to fit Inconel 718 alloy residual stress profiles obtained from the finite element model, achieving a great fit precision from 89.0% to 99.6%. The coefficients of the bimodal Gaussian function were regressed with cutting parameters by the random forest algorithm. The regression precision was controlled between 80% and 85% to prevent overfitting. Experiments, compromising cylindrical turning and residual stress measurements, were conducted to modify the finite element results. The finite element results were convincing after the experiment modification, ensuring the rationality of the statistical model. It turns out that predicted residual stresses are consistent with simulations and predicted data points are within the range of error bars. The max error of predicted surface residual stress (SRS) is 113.156 MPa, while the min error is 23.047 MPa. As for the maximum compressive residual stress (MCRS), the max error is 93.025 MPa, and the min error is 22.233 MPa. Considering the large residual stress value of Inconel 718, the predicted error is acceptable. According to the semi-empirical model, the influence of cutting parameters on the residual stress distribution was investigated. It shows that the cutting speed influences circumferential and axial MCRS, circumferential and axial depth of settling significantly, and thus has the most considerable influence on the residual stress distribution. Meanwhile, the depth of cut has the least impact because it only affects axial MCRS and axial depth of settling significantly.
Semi-Empirical Prediction of Residual Stress Profiles in Machining IN718 Alloy Using Bimodal Gaussian Curve.
阅读:5
作者:Dong Penghao, Peng Huachen, Cheng Xianqiang, Xing Yan, Tang Wencheng, Zhou Xin
| 期刊: | Materials | 影响因子: | 3.200 |
| 时间: | 2019 | 起止号: | 2019 Nov 22; 12(23):3864 |
| doi: | 10.3390/ma12233864 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
