The MIM1-BH3 mimetic, which inhibits the Mcl-1 antiapoptotic protein, may be an efficacious molecule able to induce apoptosis. Previously, we found that moxifloxacin (MXFL) is able to modulate Mcl-1 protein expression. Therefore, in the current study, we assessed the impact of the MXFL, MIM1, and MXFL/MIM1 mixtures on viability and apoptosis in amelanotic A375 and melanotic G361 melanoma cells. The obtained results showed that MXFL and MIM1 exerted high cytotoxic and proapoptotic potential. In the case of two-component models, we have demonstrated that the use of the MIM1 and MXFL mixtures resulted in a significant intensification of both cytotoxic and proapoptotic activity, shown as a modulatory effect on the early and late phases of apoptosis toward the analyzed melanoma cells when compared with MIM1 or MXFL alone. We report, for the first time, the high proapoptotic activity of MIM1 and MXFL applied in a two-component model toward melanoma cells, pointing to the Mcl-1 protein as an important molecular target. The observed potential synergistic mode of action-expressed as cytotoxic and proapoptotic activity enhancement, detected for MIM1 and MXFL-may represent a new direction for further in vitro and in vivo experiments concerning the role of the Mcl-1 protein in the treatment of melanoma. Moreover, the presented results certainly contribute to expanding the knowledge of the pharmacology of both fluoroquinolones and BH3 mimetics, and also enable a better understanding of melanoma cell biology.
Moxifloxacin and BH3 Mimetic-MIM1 Demonstrate a Potential Synergistic Anti-Melanoma Mode of Action by Cytotoxic and Proapoptotic Activity Enhancement in A375 and G361 Melanoma Cells.
阅读:5
作者:Beberok Artur, Rzepka Zuzanna, Karkoszka-Stanowska Marta, WrzeÅniok Dorota
| 期刊: | Molecules | 影响因子: | 4.600 |
| 时间: | 2025 | 起止号: | 2025 Aug 5; 30(15):3272 |
| doi: | 10.3390/molecules30153272 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
