Dissecting tumor transcriptional heterogeneity from single-cell RNA-seq data by generalized binary covariance decomposition.

阅读:3
作者:Liu Yusha, Carbonetto Peter, Willwerscheid Jason, Oakes Scott A, Macleod Kay F, Stephens Matthew
Profiling tumors with single-cell RNA sequencing has the potential to identify recurrent patterns of transcription variation related to cancer progression, and to produce therapeutically relevant insights. However, strong intertumor heterogeneity can obscure more subtle patterns that are shared across tumors. Here we introduce a statistical method, generalized binary covariance decomposition (GBCD), to address this problem. We show that GBCD can decompose transcriptional heterogeneity into interpretable components-including patient-specific, dataset-specific and shared components relevant to disease subtypes-and that, in the presence of strong intertumor heterogeneity, it can produce more interpretable results than existing methods. Applied to data on pancreatic ductal adenocarcinoma, GBCD produced a refined characterization of existing tumor subtypes, and identified a gene expression program prognostic of poor survival independent of tumor stage and subtype. The gene expression program is enriched for genes involved in stress responses, and suggests a role for the integrated stress response in pancreatic ductal adenocarcinoma.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。