NETWORK EXPLORATION VIA THE ADAPTIVE LASSO AND SCAD PENALTIES.

阅读:3
作者:Fan Jianqing, Feng Yang, Wu Yichao
Graphical models are frequently used to explore networks, such as genetic networks, among a set of variables. This is usually carried out via exploring the sparsity of the precision matrix of the variables under consideration. Penalized likelihood methods are often used in such explorations. Yet, positive-definiteness constraints of precision matrices make the optimization problem challenging. We introduce non-concave penalties and the adaptive LASSO penalty to attenuate the bias problem in the network estimation. Through the local linear approximation to the non-concave penalty functions, the problem of precision matrix estimation is recast as a sequence of penalized likelihood problems with a weighted L(1) penalty and solved using the efficient algorithm of Friedman et al. (2008). Our estimation schemes are applied to two real datasets. Simulation experiments and asymptotic theory are used to justify our proposed methods.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。