Utilizing reliable and accurate positioning and navigation systems is crucial for saving the lives of rescue personnel and accelerating rescue operations. However, Global Navigation Satellite Systems (GNSSs), such as GPS, may not provide stable signals in dense forests. Therefore, integrating multiple sensors like GPS and Inertial Measurement Units (IMUs) becomes essential to enhance the availability and accuracy of positioning systems. To accurately estimate rescuers' positions, this paper employs the Adaptive Unscented Kalman Filter (AUKF) algorithm with measurement noise variance matrix adaptation, integrating IMU and GPS data alongside barometric altitude measurements for precise three-dimensional positioning in complex environments. The AUKF enhances estimation robustness through the adaptive adjustment of the measurement noise variance matrix, particularly excelling when GPS signals are interrupted. This study conducted tests on two-dimensional and three-dimensional road scenarios in forest environments, confirming that the AUKF-algorithm-based integrated navigation system outperforms the traditional Extended Kalman Filter (EKF), Unscented Kalman Filter (UKF), and Adaptive Extended Kalman Filter (AEKF) in emergency rescue applications. The tests further evaluated the system's navigation performance on rugged roads and during GPS signal interruptions. The results demonstrate that the system achieves higher positioning accuracy on rugged forest roads, notably reducing errors by 18.32% in the north direction, 8.51% in the up direction, and 3.85% in the east direction compared to the EKF. Furthermore, the system exhibits good adaptability during GPS signal interruptions, ensuring continuous and accurate personnel positioning during rescue operations.
Application of IMU/GPS Integrated Navigation System Based on Adaptive Unscented Kalman Filter Algorithm in 3D Positioning of Forest Rescue Personnel.
阅读:3
作者:Pang Shengli, Zhang Bohan, Lu Jintian, Pan Ruoyu, Wang Honggang, Wang Zhe, Xu Shiji
| 期刊: | Sensors | 影响因子: | 3.500 |
| 时间: | 2024 | 起止号: | 2024 Sep 10; 24(18):5873 |
| doi: | 10.3390/s24185873 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
