A unilateral negative feedback loop between miR-200 microRNAs and Sox2/E2F3 controls neural progenitor cell-cycle exit and differentiation.

阅读:5
作者:Peng Changgeng, Li Na, Ng Yen-Kar, Zhang Jingzhong, Meier Florian, Theis Fabian J, Merkenschlager Matthias, Chen Wei, Wurst Wolfgang, Prakash Nilima
MicroRNAs have emerged as key posttranscriptional regulators of gene expression during vertebrate development. We show that the miR-200 family plays a crucial role for the proper generation and survival of ventral neuronal populations in the murine midbrain/hindbrain region, including midbrain dopaminergic neurons, by directly targeting the pluripotency factor Sox2 and the cell-cycle regulator E2F3 in neural stem/progenitor cells. The lack of a negative regulation of Sox2 and E2F3 by miR-200 in conditional Dicer1 mutants (En1(+/Cre); Dicer1(flox/flox) mice) and after miR-200 knockdown in vitro leads to a strongly reduced cell-cycle exit and neuronal differentiation of ventral midbrain/hindbrain (vMH) neural progenitors, whereas the opposite effect is seen after miR-200 overexpression in primary vMH cells. Expression of miR-200 is in turn directly regulated by Sox2 and E2F3, thereby establishing a unilateral negative feedback loop required for the cell-cycle exit and neuronal differentiation of neural stem/progenitor cells. Our findings suggest that the posttranscriptional regulation of Sox2 and E2F3 by miR-200 family members might be a general mechanism to control the transition from a pluripotent/multipotent stem/progenitor cell to a postmitotic and more differentiated cell.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。