Tenascin-C (TNC), a major component of the extracellular matrix, is strongly upregulated after injuries of the central nervous system (CNS) but its role in tissue repair is not understood. Both regeneration promoting and inhibiting roles of TNC have been proposed considering its abilities to both support and restrict neurite outgrowth in vitro. Here, we show that spontaneous recovery of locomotor functions after spinal cord injury is impaired in adult TNC-deficient (TNC(-/-)) mice in comparison to wild-type (TNC(+/+)) mice. The impaired recovery was associated with attenuated excitability of the plantar Hoffmann reflex (H-reflex), reduced glutamatergic input, reduced sprouting of monaminergic axons in the lumbar spinal cord and enhanced post-traumatic degeneration of corticospinal axons. The degeneration of corticospinal axons in TNC(-/-) mice was normalized to TNC(+/+) levels by application of the alternatively spliced TNC fibronectin type III homologous domain D (fnD). Finally, overexpression of TNC-fnD via adeno-associated virus in wild-type mice improved locomotor recovery, increased monaminergic axons sprouting, and reduced lesion scar volume after spinal cord injury. The functional efficacy of the viral-mediated TNC indicates a potentially useful approach for treatment of spinal cord injury.
The extracellular matrix glycoprotein tenascin-C is beneficial for spinal cord regeneration.
阅读:3
作者:Chen Jian, Joon Lee Hyun, Jakovcevski Igor, Shah Ronak, Bhagat Neha, Loers Gabriele, Liu Hsing-Yin, Meiners Sally, Taschenberger Grit, Kügler Sebastian, Irintchev Andrey, Schachner Melitta
| 期刊: | Molecular Therapy | 影响因子: | 12.000 |
| 时间: | 2010 | 起止号: | 2010 Oct;18(10):1769-77 |
| doi: | 10.1038/mt.2010.133 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
