p53 plays a role in mesenchymal differentiation programs, in a cell fate dependent manner.

阅读:4
作者:Molchadsky Alina, Shats Igor, Goldfinger Naomi, Pevsner-Fischer Meirav, Olson Melissa, Rinon Ariel, Tzahor Eldad, Lozano Guillermina, Zipori Dov, Sarig Rachel, Rotter Varda
BACKGROUND: The tumor suppressor p53 is an important regulator that controls various cellular networks, including cell differentiation. Interestingly, some studies suggest that p53 facilitates cell differentiation, whereas others claim that it suppresses differentiation. Therefore, it is critical to evaluate whether this inconsistency represents an authentic differential p53 activity manifested in the various differentiation programs. METHODOLOGY/PRINCIPAL FINDINGS: To clarify this important issue, we conducted a comparative study of several mesenchymal differentiation programs. The effects of p53 knockdown or enhanced activity were analyzed in mouse and human mesenchymal cells, representing various stages of several differentiation programs. We found that p53 down-regulated the expression of master differentiation-inducing transcription factors, thereby inhibiting osteogenic, adipogenic and smooth muscle differentiation of multiple mesenchymal cell types. In contrast, p53 is essential for skeletal muscle differentiation and osteogenic re-programming of skeletal muscle committed cells. CONCLUSIONS: These comparative studies suggest that, depending on the specific cell type and the specific differentiation program, p53 may exert a positive or a negative effect, and thus can be referred as a "guardian of differentiation" at large.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。