Dopamine alters AMPA receptor synaptic expression and subunit composition in dopamine neurons of the ventral tegmental area cultured with prefrontal cortex neurons.

阅读:2
作者:Gao Can, Wolf Marina E
Excitatory synapses onto dopamine (DA) neurons of the ventral tegmental area (VTA) represent a critical site of psychostimulant-induced synaptic plasticity. This plasticity involves alterations in synaptic strength through AMPA receptor (AMPAR) redistribution. Here, we report an in vitro model for studying regulation of AMPAR trafficking in DA neurons under control conditions and after elevation of DA levels, mimicking cocaine exposure. We used cocultures containing rat VTA neurons and prefrontal cortex (PFC) neurons from enhanced cyan fluorescent protein-expressing mice. In VTA-PFC cocultures, D1 receptor activation (10 min) increased synaptic and nonsynaptic glutamate receptor subunit 1 (GluR1) and GluR2 surface expression on DA neurons. NMDA or AMPA receptor antagonists blocked this effect, and it was not observed in pure VTA cultures, suggesting that DA agonists acted on D1 receptors on PFC neurons, altering their excitatory transmission onto VTA DA neurons and, thus, influencing AMPARs. To mimic the longer elevation in extracellular DA levels produced by systemic cocaine, cocultures were incubated with DA for 1 h. Synaptic GluR1 was increased 24 h later, reminiscent of the increased AMPA/NMDA ratio at excitatory synapses onto VTA DA neurons 24 h after cocaine injection (Ungless et al., 2001). In contrast, GluR2 was unchanged. Analysis of colocalization of surface GluR1-3 labeling suggested that control DA neurons express a substantial number of GluR1/2, GluR2/3, and homomeric GluR1 receptors and that the increase in surface AMPARs 24 h after DA exposure may in part reflect increased GluR1/3-containing receptors. These results help define the cellular basis for plasticity underlying the development of behavioral sensitization.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。