Phenolic compounds are largely emitted from biomass burning (BB) and have a significant potential to form SOA (Phc-SOA). However, the toxicological properties of Phc-SOA remain unclear. In this study, phenol and guaiacol were chosen as two representative phenolic gases in BB plumes, and the toxicological properties of water-soluble components of their SOA generated under different photochemical ages and NO(x) levels were investigated. Phenolic compounds contribute greatly to the oxidative potential (OP) of biomass-burning SOA. OH-adducts of guaiacol (e.g., 2-methoxyhydroquinone) were identified as components of guaiacol SOA (GSOA) with high OP. The addition of nitro groups to 2,5-dimethyl-1,4-benzoquinone, a surrogate quinone compound in Phc-SOA, increased its OP. The toxicity of both phenol SOA (PSOA) and GSOA in vitro in human alveolar epithelial cells decreased with aging in terms of both cell death and cellular reactive oxygen species (ROS), possibly due to more ring-opening products with relatively low toxicity. The influence of NO(x) was consistent between cell death and cellular ROS for GSOA but not for PSOA, indicating that cellular ROS production does not necessarily represent all processes contributing to cell death caused by PSOA. Combining different acellular and cellular assays can provide a comprehensive understanding of aerosol toxicological properties.
Secondary Organic Aerosol Generated from Biomass Burning Emitted Phenolic Compounds: Oxidative Potential, Reactive Oxygen Species, and Cytotoxicity.
阅读:5
作者:Fang Zheng, Lai Alexandra, Dongmei Cai, Chunlin Li, Carmieli Raanan, Chen Jianmin, Wang Xinming, Rudich Yinon
| 期刊: | Environmental Science & Technology | 影响因子: | 11.300 |
| 时间: | 2024 | 起止号: | 2024 May 14; 58(19):8194-8206 |
| doi: | 10.1021/acs.est.3c09903 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
