WilsonGenAI a deep learning approach to classify pathogenic variants in Wilson Disease

WilsonGenAI 是一种利用深度学习方法对威尔逊病致病变异进行分类的技术。

阅读:2
作者:Aastha Vatsyayan ,Mukesh Kumar ,Bhaskar Jyoti Saikia ,Vinod Scaria ,Binukumar B K

Abstract

Background: Advances in Next Generation Sequencing have made rapid variant discovery and detection widely accessible. To facilitate a better understanding of the nature of these variants, American College of Medical Genetics and Genomics and the Association of Molecular Pathologists (ACMG-AMP) have issued a set of guidelines for variant classification. However, given the vast number of variants associated with any disorder, it is impossible to manually apply these guidelines to all known variants. Machine learning methodologies offer a rapid way to classify large numbers of variants, as well as variants of uncertain significance as either pathogenic or benign. Here we classify ATP7B genetic variants by employing ML and AI algorithms trained on our well-annotated WilsonGen dataset. Methods: We have trained and validated two algorithms: TabNet and XGBoost on a high-confidence dataset of manually annotated, ACMG & AMP classified variants of the ATP7B gene associated with Wilson's Disease. Results: Using an independent validation dataset of ACMG & AMP classified variants, as well as a patient set of functionally validated variants, we showed how both algorithms perform and can be used to classify large numbers of variants in clinical as well as research settings. Conclusion: We have created a ready to deploy tool, that can classify variants linked with Wilson's disease as pathogenic or benign, which can be utilized by both clinicians and researchers to better understand the disease through the nature of genetic variants associated with it.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。