To efficiently solve a large scale unconstrained minimization problem with a dense Hessian matrix, this paper proposes to use an incomplete Hessian matrix to define a new modified Newton method, called the incomplete Hessian Newton method (IHN). A theoretical analysis shows that IHN is convergent globally, and has a linear rate of convergence with a properly selected symmetric, positive definite incomplete Hessian matrix. It also shows that the Wolfe conditions hold in IHN with a line search step length of one. As an important application, an effective IHN and a modified IHN, called the truncated-IHN method (T-IHN), are constructed for solving a large scale chemical database optimal projection mapping problem. T-IHN is shown to work well even with indefinite incomplete Hessian matrices. Numerical results confirm the theoretical results of IHN, and demonstrate the promising potential of T-IHN as an efficient minimization algorithm.
An incomplete Hessian Newton minimization method and its application in a chemical database problem.
阅读:6
作者:Xie Dexuan, Ni Qin
| 期刊: | Computational Optimization and Applications | 影响因子: | 2.000 |
| 时间: | 2009 | 起止号: | 2009 Dec;44(3):467-485 |
| doi: | 10.1007/s10589-008-9164-y | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
