Off-the-grid regularisation for Poisson inverse problems.

阅读:6
作者:Lazzaretti Marta, Estatico Claudio, Melero Alejandro, Calatroni Luca
Off-the-grid regularisation has been extensively employed over the last decade in the context of ill-posed inverse problems formulated in the continuous setting of the space of Radon measures M(Ω) . These approaches enjoy convexity and counteract the discretisation biases as well the numerical instabilities typical of their discrete counterparts. In the framework of sparse reconstruction of discrete point measures (sum of weighted Diracs), a Total Variation regularisation norm in M(Ω) is typically combined with an L2 data term modelling additive Gaussian noise. To assess the framework of off-the-grid regularisation in the presence of signal-dependent Poisson noise, we consider in this work a variational model where Total Variation regularisation is coupled with a Kullback-Leibler data term under a non-negativity constraint. Analytically, we study the optimality conditions of the composite functional and analyse its dual problem. Then, we consider an homotopy strategy to select an optimal regularisation parameter and use it within a Sliding Frank-Wolfe algorithm. Several numerical experiments on both 1D/2D/3D simulated and real 3D fluorescent microscopy data are reported.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。