Dynamic stochastic optimization models provide a powerful tool to represent sequential decision-making processes. Typically, these models use statistical predictive methods to capture the structure of the underlying stochastic process without taking into consideration estimation errors and model misspecification. In this context, we propose a data-driven prescriptive analytics framework aiming to integrate the machine learning and dynamic optimization machinery in a consistent and efficient way to build a bridge from data to decisions. The proposed framework tackles a relevant class of dynamic decision problems comprising many important practical applications. The basic building blocks of our proposed framework are: (1) a Hidden Markov Model as a predictive (machine learning) method to represent uncertainty; and (2) a distributionally robust dynamic optimization model as a prescriptive method that takes into account estimation errors associated with the predictive model and allows for control of the risk associated with decisions. Moreover, we present an evaluation framework to assess out-of-sample performance in rolling horizon schemes. A complete case study on dynamic asset allocation illustrates the proposed framework showing superior out-of-sample performance against selected benchmarks. The numerical results show the practical importance and applicability of the proposed framework since it extracts valuable information from data to obtain robustified decisions with an empirical certificate of out-of-sample performance evaluation.
A data-driven approach for a class of stochastic dynamic optimization problems.
阅读:6
作者:Silva Thuener, Valladão Davi, Homem-de-Mello Tito
| 期刊: | Computational Optimization and Applications | 影响因子: | 2.000 |
| 时间: | 2021 | 起止号: | 2021;80(3):687-729 |
| doi: | 10.1007/s10589-021-00320-4 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
