Benford's law states that the first digits of numbers in any natural dataset appear with defined frequencies. Pioneering, we use Benford distribution to analyse the geo-location of cities and their population in the majority of countries. We use distances in three dimensions: 1D between the population values, 2D between the cities, based on geo-coordinates of location, 3D between cities' location and population, which jointly reflects separation and mass of urban locations. We get four main findings. Firstly, we empirically show that mutual 3D socio-geo distances between cities and populations in most countries conform with Benford's law, and thus the urban geo-locations have natural spatial distribution. Secondly, we show empirically that the population of cities within countries follows the composition of gamma (1,1) distributions and that 1D distance between populations also conforms to Benford's law. Thirdly, we pioneer in replicating spatial natural distribution-we discover in simulation that a mixture of three pure point-patterns: clustered, ordered and random in proportions 15:3:2 makes the 2D spatial distribution Benford-like. Complex 3D Benford-like patterns can be built upon 2D (spatial) Benford distribution and gamma (1,1) distribution of cities' sizes. This finding enables generating 2D and 3D Benford distributions, which may replicate well the urban settlement. Fourth, we use historical settlement analysis to claim that the geo-location of cities and inhabitants worldwide followed the evolutionary process, resulting in natural Benford-like spatial distribution and to justify our statistical findings. Those results are very novel. This study develops new spatial distribution to simulate natural locations. It shows that evolutionary settlement patterns resulted in the natural location of cities, and historical distortions in urbanisation, even if persistent till now, are being evolutionary corrected.
Natural spatial pattern-When mutual socio-geo distances between cities follow Benford's law.
阅读:7
作者:Kopczewska Katarzyna, Kopczewski Tomasz
| 期刊: | PLoS One | 影响因子: | 2.600 |
| 时间: | 2022 | 起止号: | 2022 Oct 20; 17(10):e0276450 |
| doi: | 10.1371/journal.pone.0276450 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
