INTRODUCTION: This study relates to use of zerovalent iron to generate hydroxyl free radicals and undergo subsequent oxidation to destroy 4-nonylphenol (NP) by mild process in aqueous solution and activation of oxygen gas (O2) at room temperature. This technology is based on a novel oxidative mechanism mediated by zerovalent iron rather than commonly used reduction mechanism. MATERIALS AND METHODS: A laboratory scale device consisting of a 250 ml pyrex serum vials fixed to a Vortex agitator was used. Different amounts of zerovalent iron powder (ZVI; 1, 10, and 30 g/l) at pH 4 and room temperature with bubbling of oxygen gas were investigated. RESULTS AND CONCLUSION: Experiments showed an observed degradation rate k (obs) directly proportional to the amount of iron. 4-Nonylphenol degradation reactions demonstrated first-order kinetics with a half-life of about 10.5 â± â0.5 and 3.5â ± â0.2 min when experiments were conducted at [ZVI]â=â1 and 30 g/l respectively. Three analytical techniques were employed to monitor 4-nonylphenol degradation and mineralization: (1) spectrofluorimetry; (2) high-performance liquid chromatography; (3) total organic carbon meter (TOC meter). Results showed a complete disappearance of 4-nonylphenol after 20 min of contact with ZVI. The intermediate by-products of the reaction were not identified but the disappearance of NP was monitored by the three above-mentioned techniques.
Remediation of 4-nonylphenol in aqueous solution by using free radicals generated by the oxidative reactions.
阅读:7
作者:Rima Jamil, Assaker Karine
| 期刊: | Environmental Science and Pollution Research | 影响因子: | 0.000 |
| 时间: | 2012 | 起止号: | 2012 Jul;19(6):2038-43 |
| doi: | 10.1007/s11356-011-0690-2 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
