The powder form of the new nanofiber composite of poly(acrylonitrile-co-methylmethacrylate) (P(An-MMa)) with zirconium dioxide (ZrO(2)) was synthesized using the sol-gel method and subsequently converted to a thin film [P(An-MMa)/ZrO(2)](TF) via the physical vapor deposition (PVD) technique. Numerous characterization techniques, including Raman spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and ultraviolet-visible (UV-Vis) optical spectroscopy, were used to characterize [P(An-MMa)/ZrO(2)](TF). Additionally, using density functional theory (DFT), optimization via time-dependent density functional theory (TD-DFT/DMol(3)) and Cambridge Serial Total Energy Bundle (TD-DFT/CASTEP) was developed. The TD-DFT calculations accurately matched the observed XRD and Raman spectra and validated the molecular structure of the examined materials. The average crystallite size of [P(An-MMa)/ZrO(2)](TF), as determined by XRD calculations, is 171.04Â nm. The SEM image depicts a one-dimensional morphological structure made up of tightly packed fibrous nanowires or brushes. The optical properties of the films were determined using optical absorbance spectrophotometric results in the 200-850-nm wavelength range. The optical energy bandgaps computed using Tauc's equation for [P(An-MMa)/ZrO(2)](TF) are 2.352 and 2.253Â eV, respectively, whereas the isolated molecule of the composite [P(An-MMa)/ZrO(2)](Iso) has a bandgap of 2.415Â eV as determined by TD-DFT/DMol(3). The optical characteristics predicted by CASTEP in TD-DFT are in good agreement with the experimental values. The investigated large optical energy bandgap nanofiber composite is advantageous for some energy storage applications.
Study of the structural characteristics, optical properties, and electrical conductivity of doped [P(An-MMa)/ZrO(2)](TF) nanofiber composite using experimental data and TD-DFT/DMol(3) computations.
阅读:6
作者:Kenawy El-Refaie, Ibrahim Ali, Al-Hossainy Ahmed F
| 期刊: | Environmental Science and Pollution Research | 影响因子: | 0.000 |
| 时间: | 2023 | 起止号: | 2023 Oct;30(49):106755-106773 |
| doi: | 10.1007/s11356-022-22477-z | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
