Comparison of three different zeolites to activate peroxymonosulfate for the degradation of the pharmaceutical ciprofloxacin in water.

阅读:6
作者:Serna-Galvis Efraím A, Mendoza-Merlano Carlos, Arboleda-Echavarría Johana, Torres-Palma Ricardo A, Echavarría-Isaza Adriana
Zeolites are typically used as adsorbents for the removal of organic pollutants from water but recently are gaining attention as catalysts for the activation of persulfates toward contaminants degradation. In this work, the capability of a zeolite Y (FAU-type) and two zeolites beta (BEA-type) to activate peroxymonosulfate (PMS) toward the degradation of one representative pollutant of a pharmaceutical nature (i.e., ciprofloxacin) was tested and compared. Initially, the characterization of the considered zeolites was carried out, evidencing that they had different Si/Al, surface area, and basicity. Then, the main degradation pathway involved in the target pollutant degradation was determined and the activating ability of three zeolites was compared. It was found that among the three tested materials, zeolite Y had the highest activating capability toward PMS for ciprofloxacin degradation (showing ~ 90% degradation after 10 min of treatment). The synergy (S) of the systems followed the order: zeolites beta/PMS (S, 0.5-1.4) < zeolite Y/PMS (S, 3.9), revealing that the Si/Al ratio has a determinant role in the zeolite/peroxymonosulfate combination, being convenient lower values of such a ratio. In the most adequate combination (i.e., zeolite Y/PMS), the pharmaceutical was attacked by singlet oxygen (coming from the PMS activation by the zeolite via basic sites), which modified ciprofloxacin on its piperazyl ring, producing two intermediates. Theoretical analyses based on the structure suggested that the two intermediates have low toxicity against mammals. Additionally, experimental tests showed that the zeolite Y/PMS process led to a resultant solution without antimicrobial activity against S. aureus. Finally, it can be mentioned that ZY/PMS was used to deal with ciprofloxacin in synthetic hospital wastewater, achieving ~ 40% pollutant elimination after 60 min of treatment.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。