The imidazoquinoline family of toll-like receptor (TLR) immune cell agonists has long demonstrated moderate anticancer immunogenic effects by activating tumoricidal immune cells and depleting immunosuppressive cells within the tumor microenvironment. At a molecular level, we have also established that several imidazoquinolines traffic from within cancer cells to the extracellular space via P-glycoprotein (P-gp)-mediated efflux, a process commonly upregulated as multidrug-resistant (MDR) cancers acquire chemoresistance. However, imidazoquinoline P-gp efflux has never been deliberately enhanced to exploit this process. This study pioneers efforts to optimize imidazoquinoline efflux, ultimately balancing immunogenic potency alongside functional efflux susceptibility. Starting from an established imidazoquinoline scaffold previously optimized for potency, efflux was significantly enhanced by elaborating the N1 benzylic position with amide- and sulfonamide-linked P-gp affinity fragments consisting of empirically established P-gp substrates as well as computationally predicted P-gp binders. Lead compounds were identified from this series that exhibited enhanced P-gp efflux with functional retention of TLR agonism. Similar to the parent imidazoquinoline scaffold, leads had limited direct cytotoxicity in both treatment-naive and MDR B16 melanoma models and did not significantly affect the efficacy or trafficking of the chemotherapeutic doxorubicin. Efflux-enhanced imidazoquinolines were preferentially expelled from MDR-B16 cells relative to treatment-naive cells, resulting in immunogenicity that was enhanced as a consequence of the acquired MDR phenotype. Because enhanced P-gp-mediated efflux is common to most MDR cancer types, we envision that these results could inspire the design of immunotherapeutic drugs with mechanisms of action that are broadly enhanced in MDR cancers that have failed treatment or acquired resistance to chemotherapeutics.
Efflux-Enhanced Imidazoquinolines To Exploit Chemoresistance.
阅读:3
作者:Haroon Muhammad, Sultana Sharmin, Najibi Seyedeh A, Wang Emily T, Michaelson Abbey, Al Muied Pranto S M, Nielsen Amy E, Mancini Rock J
| 期刊: | ACS Omega | 影响因子: | 4.300 |
| 时间: | 2025 | 起止号: | 2025 Mar 17; 10(12):12319-12333 |
| doi: | 10.1021/acsomega.4c11297 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
