The realisation of the low-carbon transition of the energy system in resource-intensive regions, as embodied by Shanxi Province, depends on a thorough understanding of the factors impacting the power sector's carbon emissions and an accurate prediction of the peak trend. Because of this, the power industry's carbon emissions in Shanxi province are measured in this article from 1995 to 2020 using data from the Intergovernmental Panel on Climate Change (IPCC). To obtain a deeper understanding of the factors impacting carbon emissions in the power sector, factor decomposition is performed using the Logarithmic Mean Divisia Index (LMDI). Second, in order to precisely mine the relationship between variables and carbon emissions, the Sparrow Search Algorithm (SSA) aids in the optimisation of the Long Short-Term Memory (LSTM). In order to implement SSA-LSTM-based carbon peak prediction in the power industry, four development scenarios are finally built up. The findings indicate that: (1) There has been a fluctuating upward trend in Shanxi Province's total carbon emissions from the power industry between 1995 and 2020, with a cumulative growth of 372.10 percent. (2) The intensity of power consumption is the main factor restricting the rise of carbon emissions, contributing -65.19%, while the per capita secondary industry contribution factor, contributing 158.79%, is the main driver of the growth in emissions. (3) While the baseline scenario and the rapid development scenario fail to peak by 2030, the low carbon scenario and the green development scenario peak at 243,991,100 tonnes and 258,828,800 tonnes, respectively, in 2025 and 2028. (4) Based on the peak performance and the decomposition results, resource-intensive cities like Shanxi's power industry should concentrate on upgrading and strengthening the industrial structure, getting rid of obsolete production capacity, and encouraging the faster development of each factor in order to help the power sector reach peak carbon performance.
Study on carbon emission driving factors and carbon peak forecasting in power sector of Shanxi province.
阅读:3
作者:Hu Wei, Zheng Tingting, Zhang Yi
| 期刊: | PLoS One | 影响因子: | 2.600 |
| 时间: | 2024 | 起止号: | 2024 Jul 12; 19(7):e0305665 |
| doi: | 10.1371/journal.pone.0305665 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
