The outbreak of the novel coronavirus, COVID-19, has become one of the most severe pandemics in human history. In this paper, we propose to leverage social media users as social sensors to simultaneously predict the pandemic trends and suggest potential risk factors for public health experts to understand spread situations and recommend proper interventions. More precisely, we develop novel deep learning models to recognize important entities and their relations over time, thereby establishing dynamic heterogeneous graphs to describe the observations of social media users. A dynamic graph neural network model can then forecast the trends (e.g. newly diagnosed cases and death rates) and identify high-risk events from social media. Based on the proposed computational method, we also develop a web-based system for domain experts without any computer science background to easily interact with. We conduct extensive experiments on large-scale datasets of COVID-19 related tweets provided by Twitter, which show that our method can precisely predict the new cases and death rates. We also demonstrate the robustness of our web-based pandemic surveillance system and its ability to retrieve essential knowledge and derive accurate predictions across a variety of circumstances. Our system is also available at http://scaiweb.cs.ucla.edu/covidsurveiller/. This article is part of the theme issue 'Data science approachs to infectious disease surveillance'.
COVID-19 Surveiller: toward a robust and effective pandemic surveillance system basedon social media mining.
阅读:3
作者:Jiang Jyun-Yu, Zhou Yichao, Chen Xiusi, Jhou Yan-Ru, Zhao Liqi, Liu Sabrina, Yang Po-Chun, Ahmar Jule, Wang Wei
| 期刊: | Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences | 影响因子: | 3.700 |
| 时间: | 2022 | 起止号: | 2022 Jan 10; 380(2214):20210125 |
| doi: | 10.1098/rsta.2021.0125 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
