Enhanced Performance of Sn-Based Perovskite Photodetectors Through Double-Sided Passivation for Near-Infrared Applications.

阅读:3
作者:Lai Yu Hsuan, Li Chien Cheng, Huang Yu Chuan, Yu Huang Tzu, Gao Xin Kai, Yang Chung Chi, Shan Tan Chih
The development of high-performance Sn-based perovskite photodetectors is presented with double-sided passivation using large alkylammonium interlayers of PEAI and BDAI₂. This dual passivation strategy, applied to the top and bottom of FASnI₃ films, effectively improves film quality by reducing defect density, enhancing carrier mobility, and minimizing non-radiative energy losses at the interfaces. At 720 nm, the photodetectors demonstrate a responsivity of 0.37 A W(-1), a detectivity of 6.12 × 10¹(3) Jones, and an external quantum efficiency (EQE) of 65.60%, with a rapid response time of 9 µs. Additionally, at 850 nm, the detectivity reaches as high as 3.27 × 10¹(3) Jones. Furthermore, the device demonstrated a low 1/f noise of 1.21 × 10⁻¹⁵ AHz⁻⁰.⁵ at 10 Hz. Transient photocurrent (TPC) and transient photovoltage (TPV) measurements revealed a significant increase in charge recombination lifetime (τ(e)) and improved charge transfer efficiency. These results showcase the potential of Sn perovskite photodetectors for near-infrared applications, including autonomous vehicles, biometric recognition, and biomedical treatments.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。