Nanobubbles (NBs; ~100-500 nm diameter) are preclinical ultrasound (US) contrast agents that expand applications of contrast enhanced US (CEUS). Due to their sub-micron size, high particle density, and deformable shell, NBs in pathological states of heightened vascular permeability (e.g. in tumors) extravasate, enabling applications not possible with microbubbles (~1000-10,000 nm diameter). A method that can separate intravascular versus extravascular NB signal is needed as an imaging biomarker for improved tumor detection. We present a demonstration of decorrelation time (DT) mapping for enhanced tumor NB-CEUS imaging. In vitro models validated the sensitivity of DT to agent motion. Prostate cancer mouse models validated in vivo imaging potential and sensitivity to cancerous tissue. Our findings show that DT is inversely related to NB motion, offering enhanced detail of NB dynamics in tumors, and highlighting the heterogeneity of the tumor environment. Average DT was high in tumor regions (~9 s) compared to surrounding normal tissue (~1 s) with higher sensitivity to tumor tissue compared to other mapping techniques. Molecular NB targeting to tumors further extended DT (11 s) over non-targeted NBs (6 s), demonstrating sensitivity to NB adherence. From DT mapping of in vivo NB dynamics we demonstrate the heterogeneity of tumor tissue while quantifying extravascular NB kinetics and delineating intra-tumoral vasculature. This new NB-CEUS-based biomarker can be powerful in molecular US imaging, with improved sensitivity and specificity to diseased tissue and potential for use as an estimator of vascular permeability and the enhanced permeability and retention (EPR) effect in tumors.
Decorrelation Time Mapping as an Analysis Tool for Nanobubble-Based Contrast Enhanced Ultrasound Imaging.
阅读:4
作者:Wegierak Dana, Cooley Michaela B, Perera Reshani, Wulftange William J, Gurkan Umut A, Kolios Michael C, Exner Agata A
| 期刊: | IEEE Transactions on Medical Imaging | 影响因子: | 9.800 |
| 时间: | 2024 | 起止号: | 2024 Jun;43(6):2370-2380 |
| doi: | 10.1109/TMI.2024.3364076 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
