Bayesian inference for biomarker discovery in proteomics: an analytic solution.

阅读:9
作者:Dridi Noura, Giremus Audrey, Giovannelli Jean-Francois, Truntzer Caroline, Hadzagic Melita, Charrier Jean-Philippe, Gerfault Laurent, Ducoroy Patrick, Lacroix Bruno, Grangeat Pierre, Roy Pascal
This paper addresses the question of biomarker discovery in proteomics. Given clinical data regarding a list of proteins for a set of individuals, the tackled problem is to extract a short subset of proteins the concentrations of which are an indicator of the biological status (healthy or pathological). In this paper, it is formulated as a specific instance of variable selection. The originality is that the proteins are not investigated one after the other but the best partition between discriminant and non-discriminant proteins is directly sought. In this way, correlations between the proteins are intrinsically taken into account in the decision. The developed strategy is derived in a Bayesian setting, and the decision is optimal in the sense that it minimizes a global mean error. It is finally based on the posterior probabilities of the partitions. The main difficulty is to calculate these probabilities since they are based on the so-called evidence that require marginalization of all the unknown model parameters. Two models are presented that relate the status to the protein concentrations, depending whether the latter are biomarkers or not. The first model accounts for biological variabilities by assuming that the concentrations are Gaussian distributed with a mean and a covariance matrix that depend on the status only for the biomarkers. The second one is an extension that also takes into account the technical variabilities that may significantly impact the observed concentrations. The main contributions of the paper are: (1) a new Bayesian formulation of the biomarker selection problem, (2) the closed-form expression of the posterior probabilities in the noiseless case, and (3) a suitable approximated solution in the noisy case. The methods are numerically assessed and compared to the state-of-the-art methods (t test, LASSO, Battacharyya distance, FOHSIC) on synthetic and real data from proteins quantified in human serum by mass spectrometry in selected reaction monitoring mode.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。