In this paper, we propose methods for functional predictor selection and the estimation of smooth functional coefficients simultaneously in a scalar-on-function regression problem under a high-dimensional multivariate functional data setting. In particular, we develop two methods for functional group-sparse regression under a generic Hilbert space of infinite dimension. We show the convergence of algorithms and the consistency of the estimation and the selection (oracle property) under infinite-dimensional Hilbert spaces. Simulation studies show the effectiveness of the methods in both the selection and the estimation of functional coefficients. The applications to functional magnetic resonance imaging (fMRI) reveal the regions of the human brain related to ADHD and IQ.
Multivariate functional group sparse regression: Functional predictor selection.
阅读:4
作者:Mahzarnia Ali, Song Jun
| 期刊: | PLoS One | 影响因子: | 2.600 |
| 时间: | 2022 | 起止号: | 2022 Apr 7; 17(4):e0265940 |
| doi: | 10.1371/journal.pone.0265940 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
