Constrained Planar Array Thinning Based on Discrete Particle Swarm Optimization with Hybrid Search Strategies.

阅读:3
作者:Cai Wanhan, Ji Lixia, Guo Chenglin, Mei Ke, Zeng Hao
This article presents a novel optimization algorithm for large array thinning. The algorithm is based on Discrete Particle Swarm Optimization (DPSO) integrated with some different search strategies. It utilizes a global learning strategy to improve the diversity of populations at the early stage of optimization. A dispersive solution set and the gravitational search algorithm are used during particle velocity updating. Then, a local search strategy is enabled in the later stage of optimization. The particle position is adaptively adjusted by the mutation probability, and its motion state is monitored by two observation parameters. The peak side-lobe level (PSLL) performance, effectiveness and robustness of the improved PSO algorithm are verified by several representative examples.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。