Granular Interfaces in TENGs: The Role of Close-Packed Polymer Bead Monolayers for Energy Harvesters.

阅读:4
作者:Jimidar Ignaas S M, Mālnieks Kaspars, Sotthewes Kai, Sherrell Peter C, Å utka Andris
Over the last decade, triboelectric nanogenerators (TENGs) are proposed as a viable alternative to address the impetus for affordable and clean energy. Here, a novel, cost-effective granular-based TENG comprising two electrodes covered with HCP monolayers of monodisperse polymer (PMMA, PS, and MF-resin) beads with diameters ranging between 0.5 and 10 µm is proposed. These monolayers are attained in <20 s by employing a solvent-free particle rubbing assembly technique on fluorocarbon-coated substrates. The performance of the proposed granular-based TENG is characterized using contact-separation (CS) experiments by changing the bead sizes (topography effects) and the polymer material (mechanical properties). These findings show that when identical polymer material is utilized, large beads charged negatively, and the small beads positively, coinciding with bulk polymer film reports. In addition, the MF particles always charge positively and show the highest charging due to their relatively higher Young's modulus. The results elucidate that a specific pair's surface charge density is enhanced when one of the electrodes is covered with the smaller bead with the highest Young's modulus, highlighting that mechanical properties dominate and that a substantial difference in size benefits the output. The stable performance of the TENG devices after 10 000 cycles corroborates its robustness.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。