Since the coronavirus disease (COVID-19) outbreak in December 2019, studies have been addressing diverse aspects in relation to COVID-19 and Variant of Concern 202012/01 (VOC 202012/01) such as potential symptoms and predictive tools. However, limited work has been performed towards the modelling of complex associations between the combined demographic attributes and varying nature of the COVID-19 infections across the globe. This study presents an intelligent approach to investigate the multi-dimensional associations between demographic attributes and COVID-19 global variations. We gather multiple demographic attributes and COVID-19 infection data (by 8 January 2021) from reliable sources, which are then processed by intelligent algorithms to identify the significant associations and patterns within the data. Statistical results and experts' reports indicate strong associations between COVID-19 severity levels across the globe and certain demographic attributes, e.g. female smokers, when combined together with other attributes. The outcomes will aid the understanding of the dynamics of disease spread and its progression, which in turn may support policy makers, medical specialists and society, in better understanding and effective management of the disease.
Analysing the impact of global demographic characteristics over the COVID-19 spread using class rule mining and pattern matching.
阅读:4
作者:Khan Wasiq, Hussain Abir, Khan Sohail Ahmed, Al-Jumailey Mohammed, Nawaz Raheel, Liatsis Panos
| 期刊: | Royal Society Open Science | 影响因子: | 2.900 |
| 时间: | 2021 | 起止号: | 2021 Jan 28; 8(1):201823 |
| doi: | 10.1098/rsos.201823 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
