Cut-off operation is widely used in the manufacturing industry and is highly energy-intensive. Prediction of specific energy consumption (SEC) using data-driven models is a promising means to understand, analyze and reduce energy consumption for cut-off grinding. The present article aims to put forth a novel methodology to predict and validate the specific energy consumption for cut-off grinding of oxygen-free copper (OFC-C10100) using supervised machine learning techniques. State-of-the-art experimental setup was designed to perform the abrasive cutting of the material at various cutting conditions. First, energy consumption values were predicted on the bases of input process parameters of feed rate, cutting thickness, and cutting tool type using the three supervised learning techniques of Gaussian process regression, regression trees, and artificial neural network (ANN). Among the three algorithms, Gaussian process regression performance was found to be superior, with minimum errors during validation and testing. The predicted values of energy consumption were then exploited to evaluate the specific energy consumption (SEC), which turned out to be highly accurate, with a correlation coefficient of 0.98. The relationship of the predicted specific energy consumption (SEC) with material removal rate agrees well with the relationship depicted in physical models, which further validates the accuracy of the prediction models.
Machine Learning-Based Prediction of Specific Energy Consumption for Cut-Off Grinding.
阅读:4
作者:Awan Muhammad Rizwan, González Rojas Hernán A, Hameed Saqib, Riaz Fahid, Hamid Shahzaib, Hussain Abrar
| 期刊: | Sensors | 影响因子: | 3.500 |
| 时间: | 2022 | 起止号: | 2022 Sep 21; 22(19):7152 |
| doi: | 10.3390/s22197152 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
