Distributed reasoning in M2M leverages the expressive power of ontology to enable semantic interoperability between heterogeneous systems of connected devices. Ontology, however, lacks the built-in, principled support to effectively handle the uncertainty inherent in M2M application domains. Thus, efficient reasoning can be achieved by integrating the inferential reasoning power of probabilistic representations with the first-order expressiveness of ontology. But there remains a gap with current probabilistic ontologies since state-of-the-art provides no compatible representation for simultaneous handling of discrete and continuous quantities in ontology. This requirement is paramount, especially in smart homes, where continuous quantities cannot be avoided, and simply mapping continuous information to discrete states through quantization can cause a great deal of information loss. In this paper, we propose a hybrid probabilistic ontology that can simultaneously handle distributions over discrete and continuous quantities in ontology. We call this new framework HyProb-Ontology, and it specifies distributions over properties of classes, which serve as templates for instances of classes to inherit as well as overwrite some aspects. Since there cannot be restriction on the dependency topology of models that HyProb-Ontology can induce across different domains, we can achieve a unified Ground Hybrid Probabilistic Model by conditional Gaussian fuzzification of the distributions of the continuous variables in ontology. From the results of our experiments, this unified model can achieve exact inference with better performance over classical Bayesian networks.
Knowledge-oriented semantics modelling towards uncertainty reasoning.
阅读:16
作者:Mohammed Abdul-Wahid, Xu Yang, Liu Ming
| 期刊: | Springerplus | 影响因子: | 0.000 |
| 时间: | 2016 | 起止号: | 2016 Jun 10; 5(1):706 |
| doi: | 10.1186/s40064-016-2331-1 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
