A theoretical framework for Landsat data modeling based on the matrix variate mean-mixture of normal model.

阅读:9
作者:Naderi Mehrdad, Bekker Andriette, Arashi Mohammad, Jamalizadeh Ahad
This paper introduces a new family of matrix variate distributions based on the mean-mixture of normal (MMN) models. The properties of the new matrix variate family, namely stochastic representation, moments and characteristic function, linear and quadratic forms as well as marginal and conditional distributions are investigated. Three special cases including the restricted skew-normal, exponentiated MMN and the mixed-Weibull MMN matrix variate distributions are presented and studied. Based on the specific presentation of the proposed model, an EM-type algorithm can be directly implemented for obtaining maximum likelihood estimate of the parameters. The usefulness and practical utility of the proposed methodology are illustrated through two conducted simulation studies and through the Landsat satellite dataset analysis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。