This paper introduces a new family of matrix variate distributions based on the mean-mixture of normal (MMN) models. The properties of the new matrix variate family, namely stochastic representation, moments and characteristic function, linear and quadratic forms as well as marginal and conditional distributions are investigated. Three special cases including the restricted skew-normal, exponentiated MMN and the mixed-Weibull MMN matrix variate distributions are presented and studied. Based on the specific presentation of the proposed model, an EM-type algorithm can be directly implemented for obtaining maximum likelihood estimate of the parameters. The usefulness and practical utility of the proposed methodology are illustrated through two conducted simulation studies and through the Landsat satellite dataset analysis.
A theoretical framework for Landsat data modeling based on the matrix variate mean-mixture of normal model.
阅读:4
作者:Naderi Mehrdad, Bekker Andriette, Arashi Mohammad, Jamalizadeh Ahad
| 期刊: | PLoS One | 影响因子: | 2.600 |
| 时间: | 2020 | 起止号: | 2020 Apr 9; 15(4):e0230773 |
| doi: | 10.1371/journal.pone.0230773 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
