In this paper, SiC/epoxy resin composites containing different amounts of micro-sized SiC with different crystal morphologies were fabricated to study the effects of crystal morphology and temperature on non-linear conductivity characteristics. The research results illustrate that the β-SiC particles can provide a higher non-linear conductivity, compared with the α-SiC particles. The presence of temperature also affected the non-linear conductivity behaviors of the epoxy/SiC composites. When the α-SiC content was low, the non-linear conductivity coefficient of the composites increased rapidly as the temperature increased, but the non-linear conductivity decreased slightly as the temperature increased when the filler concentration was large enough. To reduce the influence of the electric field concentration effect by the increase in power density on the power module packaging, the voltage sharing application of the SiC/epoxy composites was simulated by COMSOL Multiphysics (v5.2a, COMSOL Inc., Stockholm, Sweden). The results show that the composites with non-linear conductivity can reduce the electric field stress. The emerging insulation material obtained by the SiC-modified epoxy resin can effectively promote electric field distribution uniformity, and ensure the safe operation of the power module.
Non-Linear Conductivity Epoxy/SiC Composites for Emerging Power Module Packaging: Fabrication, Characterization and Application.
阅读:3
作者:Li Rui, Wang Yufan, Zhang Cheng, Liang Hucheng, Li Jin, Du Boxue
| 期刊: | Materials | 影响因子: | 3.200 |
| 时间: | 2020 | 起止号: | 2020 Jul 23; 13(15):3278 |
| doi: | 10.3390/ma13153278 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
