Discovery of sparse, reliable omic biomarkers with Stabl.

阅读:3
作者:Hédou Julien, Marić Ivana, Bellan Grégoire, Einhaus Jakob, Gaudillière Dyani K, Ladant Francois-Xavier, Verdonk Franck, Stelzer Ina A, Feyaerts Dorien, Tsai Amy S, Ganio Edward A, Sabayev Maximilian, Gillard Joshua, Amar Jonas, Cambriel Amelie, Oskotsky Tomiko T, Roldan Alennie, Golob Jonathan L, Sirota Marina, Bonham Thomas A, Sato Masaki, Diop Maïgane, Durand Xavier, Angst Martin S, Stevenson David K, Aghaeepour Nima, Montanari Andrea, Gaudillière Brice
Adoption of high-content omic technologies in clinical studies, coupled with computational methods, has yielded an abundance of candidate biomarkers. However, translating such findings into bona fide clinical biomarkers remains challenging. To facilitate this process, we introduce Stabl, a general machine learning method that identifies a sparse, reliable set of biomarkers by integrating noise injection and a data-driven signal-to-noise threshold into multivariable predictive modeling. Evaluation of Stabl on synthetic datasets and five independent clinical studies demonstrates improved biomarker sparsity and reliability compared to commonly used sparsity-promoting regularization methods while maintaining predictive performance; it distills datasets containing 1,400-35,000 features down to 4-34 candidate biomarkers. Stabl extends to multi-omic integration tasks, enabling biological interpretation of complex predictive models, as it hones in on a shortlist of proteomic, metabolomic and cytometric events predicting labor onset, microbial biomarkers of pre-term birth and a pre-operative immune signature of post-surgical infections. Stabl is available at https://github.com/gregbellan/Stabl .

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。