Mu-opioid receptor (MOR) belongs to a family of heptahelical G-protein-coupled receptors (GPCRs). Studies in humans and rodents demonstrated that the OPRM1 gene coding for MOR undergoes extensive alternative splicing afforded by the genetic complexity of OPRM1. Evidence from rodent studies also demonstrates an important role of these alternatively spliced forms in mediating opiate analgesia via their differential signaling properties. MOR signaling is predominantly G(ia) coupled. Release of the alpha subunit from G-protein complex results in the inhibition of adenylyl cyclase/cAMP pathway, whereas release of the betagamma subunits activates G-protein-activated inwardly rectifying potassium channels and inhibits voltage-dependent calcium channels. These molecular events result in the suppression of cellular activities that diminish pain sensations. Recently, a new isoform of OPRM1, MOR3, has been identified that shows an increase in the production of nitric oxide (NO) upon stimulation with morphine. Hence, there is a need to describe molecular techniques that enable the functional characterization of MOR isoforms. In this review, we describe the methodologies used to assay key mediators of MOR activation including cellular assays for cAMP, free Ca(2+), and NO, all of which have been implicated in the pharmacological effects of MOR agonists.
Molecular assays for characterization of alternatively spliced isoforms of the u opioid receptor (MOR).
阅读:3
作者:Gris Pavel, Cheng Philip, Pierson John, Maixner William, Diatchenko Luda
| 期刊: | Methods in Molecular Biology | 影响因子: | 0.000 |
| 时间: | 2010 | 起止号: | 2010;617:421-35 |
| doi: | 10.1007/978-1-60327-323-7_30 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
