MDiNE: a model to estimate differential co-occurrence networks in microbiome studies.

阅读:3
作者:McGregor Kevin, Labbe Aurélie, Greenwood Celia M T
MOTIVATION: The human microbiota is the collection of microorganisms colonizing the human body, and plays an integral part in human health. A growing trend in microbiome analysis is to construct a network to estimate the co-occurrence patterns among taxa through precision matrices. Existing methods do not facilitate investigation into how these networks change with respect to covariates. RESULTS: We propose a new model called Microbiome Differential Network Estimation (MDiNE) to estimate network changes with respect to a binary covariate. The counts of individual taxa in the samples are modeled through a multinomial distribution whose probabilities depend on a latent Gaussian random variable. A sparse precision matrix over all the latent terms determines the co-occurrence network among taxa. The model fit is obtained and evaluated using Hamiltonian Monte Carlo methods. The performance of our model is evaluated through an extensive simulation study and is shown to outperform existing methods in terms of estimation of network parameters. We also demonstrate an application of the model to estimate changes in the intestinal microbial network topology with respect to Crohn's disease. AVAILABILITY AND IMPLEMENTATION: MDiNE is implemented in a freely available R package: https://github.com/kevinmcgregor/mdine. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。