Divergence measures provide a means to measure the pairwise dissimilarity between "objects," e.g., vectors and probability density functions (pdfs). Kullback-Leibler (KL) divergence and the square loss (SL) function are two examples of commonly used dissimilarity measures which along with others belong to the family of Bregman divergences (BD). In this paper, we present a novel divergence dubbed the Total Bregman divergence (TBD), which is intrinsically robust to outliers, a very desirable property in many applications. Further, we derive the TBD center, called the t-center (using the l(1)-norm), for a population of positive definite matrices in closed form and show that it is invariant to transformation from the special linear group. This t-center, which is also robust to outliers, is then used in tensor interpolation as well as in an active contour based piecewise constant segmentation of a diffusion tensor magnetic resonance image (DT-MRI). Additionally, we derive the piecewise smooth active contour model for segmentation of DT-MRI using the TBD and present several comparative results on real data.
Total Bregman divergence and its applications to DTI analysis.
阅读:3
作者:Vemuri Baba C, Liu Meizhu, Amari Shun-Ichi, Nielsen Frank
| 期刊: | IEEE Transactions on Medical Imaging | 影响因子: | 9.800 |
| 时间: | 2011 | 起止号: | 2011 Feb;30(2):475-83 |
| doi: | 10.1109/TMI.2010.2086464 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
