A Comprehensive Characterization of the TI-LGAD Technology.

阅读:3
作者:Senger Matias, Macchiolo Anna, Kilminster Ben, Paternoster Giovanni, Centis Vignali Matteo, Borghi Giacomo
Pixelated low-gain avalanche diodes (LGADs) can provide both precision spatial and temporal measurements for charged particle detection; however, electrical termination between the pixels yields a no-gain region, such that the active area or fill factor is not sufficient for small pixel sizes. Trench-isolated LGADs (TI-LGADs) are a strong candidate for solving the fill-factor problem, as the p-stop termination structure is replaced by isolated trenches etched in the silicon itself. In the TI-LGAD process, the p-stop termination structure, typical of LGADs, is replaced by isolating trenches etched in the silicon itself. This modification substantially reduces the size of the no-gain region, thus enabling the implementation of small pixels with an adequate fill factor value. In this article, a systematic characterization of the TI-RD50 production, the first of its kind entirely dedicated to the TI-LGAD technology, is presented. Designs are ranked according to their measured inter-pixel distance, and the time resolution is compared against the regular LGAD technology.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。