Transmission latency minimization and energy efficiency improvement are two main challenges in multi-hop Cognitive Radio Networks (CRN), where the knowledge of topology and spectrum statistics are hard to obtain. For this reason, a cross-layer routing protocol based on quasi-cooperative multi-agent learning is proposed in this study. Firstly, to jointly consider the end-to-end delay and power efficiency, a comprehensive utility function is designed to form a reasonable tradeoff between the two measures. Then the joint design problem is modeled as a Stochastic Game (SG), and a quasi-cooperative multi-agent learning scheme is presented to solve the SG, which only needs information exchange with previous nodes. To further enhance performance, experience replay is applied to the update of conjecture belief to break the correlations and reduce the variance of updates. Simulation results demonstrate that the proposed scheme is superior to traditional algorithms leading to a shorter delay, lower packet loss ratio and higher energy efficiency, which is close to the performance of an optimum scheme.
A Cross-Layer Routing Protocol Based on Quasi-Cooperative Multi-Agent Learning for Multi-Hop Cognitive Radio Networks.
阅读:3
作者:Du Yihang, Chen Chun, Ma Pengfei, Xue Lei
| 期刊: | Sensors | 影响因子: | 3.500 |
| 时间: | 2019 | 起止号: | 2019 Jan 3; 19(1):151 |
| doi: | 10.3390/s19010151 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
