A Bias Compensation Method for Distributed Moving Source Localization Using TDOA and FDOA with Sensor Location Errors.

阅读:3
作者:Liu Zhixin, Wang Rui, Zhao Yongjun
Current bias compensation methods for distributed localization consider the time difference of arrival (TDOA) and frequency difference of arrival (FDOA) measurements noise, but ignore the negative influence by the sensor location uncertainties on source localization accuracy. Therefore, a new bias compensation method for distributed localization is proposed to improve the localization accuracy in this paper. This paper derives the theoretical bias of maximum likelihood estimation when the sensor location errors and positioning measurements noise both exist. Using the rough estimate result by MLE to subtract the theoretical bias can obtain a more accurate source location estimation. Theoretical analysis and simulation results indicate that the theoretical bias derived in this paper matches well with the actual bias in moderate noise level so that it can prove the correctness of the theoretical derivation. Furthermore, after bias compensation, the estimate accuracy of the proposed method achieves a certain improvement compared with existing methods.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。