Autonomous navigation of quadrupeds using coverage path planning with morphological skeleton maps.

阅读:4
作者:Becoy Alexander James, Khomenko Kseniia, Peternel Luka, Rajan Raj Thilak
This article proposes a novel method of coverage path planning for the purpose of scanning an unstructured environment autonomously. The method uses the morphological skeleton of a prior 2D navigation map via SLAM to generate a sequence of points of interest (POIs). This sequence is then ordered to create an optimal path based on the robot's current position. To control the high-level operation, a finite state machine (FSM) is used to switch between two modes: navigating toward a POI using Nav2 and scanning the local surroundings. We validate the method in a leveled, indoor, obstacle-free, non-convex environment, evaluating time efficiency and reachability over five trials. The map reader and path planner can quickly process maps of widths and heights ranging between [196,225] pixels and [185,231] pixels in 2.52 ms and 1.7 ms , respectively. Their computation time increases with 22.0 ns/pixel and 8.17 μs/pixel, respectively. The robot managed to reach 86.5% of all waypoints across the five runs. The proposed method suffers from drift occurring in the 2D navigation map.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。