Autonomous navigation of quadrupeds using coverage path planning with morphological skeleton maps.

阅读:12
作者:Becoy Alexander James, Khomenko Kseniia, Peternel Luka, Rajan Raj Thilak
This article proposes a novel method of coverage path planning for the purpose of scanning an unstructured environment autonomously. The method uses the morphological skeleton of a prior 2D navigation map via SLAM to generate a sequence of points of interest (POIs). This sequence is then ordered to create an optimal path based on the robot's current position. To control the high-level operation, a finite state machine (FSM) is used to switch between two modes: navigating toward a POI using Nav2 and scanning the local surroundings. We validate the method in a leveled, indoor, obstacle-free, non-convex environment, evaluating time efficiency and reachability over five trials. The map reader and path planner can quickly process maps of widths and heights ranging between [196,225] pixels and [185,231] pixels in 2.52 ms and 1.7 ms , respectively. Their computation time increases with 22.0 ns/pixel and 8.17 μs/pixel, respectively. The robot managed to reach 86.5% of all waypoints across the five runs. The proposed method suffers from drift occurring in the 2D navigation map.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。