The retrosplenial cortex (RSP) is a complex brain region with multiple interconnected subregions that plays crucial roles in various cognitive functions, including memory, spatial navigation, and emotion. Understanding the afferent and efferent connectivity of the RSP is essential for comprehending the underlying mechanisms of its functions. Here, via viral tracing and fluorescence micro-optical sectioning tomography (fMOST), we systematically investigated the anatomical organisation of the upstream and downstream circuits of glutamatergic and GABAergic neurons in the dorsal and ventral RSP. The cortical connections of the RSP show laminar organisation in which the input neurons are distributed more in the deeper layers of the upstream cortex. Although different types of neurons have similar upstream circuits, GABAergic neurons show bidirectional connections with the hippocampus, whereas glutamatergic neurons only show unidirectional connections. Moreover, GABAergic neurons receive more inputs from the primary sensory cortex than from the prefrontal cortex and association cortex. The dorsal and ventral subregions have preferred circuits such that the dorsal RSP exhibits spatially topological connections with the dorsal visual cortex and lateral thalamus. The systematic study on long-range connections across RSP subregions and cell types may provide useful information for future revealing of RSP working mechanisms.
Dissection of the long-range circuit of the mouse intermediate retrosplenial cortex.
阅读:4
作者:Li Yuxiao, Ren Miao, Liu Bimin, Jiang Tao, Jia Xueyan, Zhang Haili, Gong Hui, Wang Xiaojun
| 期刊: | Communications Biology | 影响因子: | 5.100 |
| 时间: | 2025 | 起止号: | 2025 Jan 15; 8(1):56 |
| doi: | 10.1038/s42003-025-07463-8 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
