Strategies for Signal Amplification of Thyroid Hormones via Electromigration Techniques Coupled with UV Detection and Laser-Induced Fluorescence.

阅读:6
作者:Pieckowski Michał, Olędzka Ilona, BÄ czek Tomasz, Kowalski Piotr
Several strategies, including UV detection with a diode array detector (DAD), laser-induced fluorescence (LIF), derivatization reactions, the use of micelles in the separation buffer, as well as online preconcentration techniques based on pressure-assisted electrokinetic injection (PAEKI), and offline preconcentration using solid-phase extraction (SPE) columns containing quaternary amine groups with a chloride counterion, were investigated for the simultaneous separation and signal amplification of free thyroid hormones (THs) in biological samples. Moreover, a sensitive method for the quantification of THs in selected biological samples using micellar electrokinetic capillary chromatography with LIF detection (MEKC-LIF) was developed. The THs present in biological samples (L-tyrosine, T2, T3, rT3, T4, and DIT) were successfully separated in less than 10 min. The analytes were separated following a derivatization procedure with fluorescein isothiocyanate isomer I (FITC). A background electrolyte (BGE) composed of 20 mM sodium tetraborate (Na(2)B(4)O(7)) and 20 mM sodium dodecyl sulphate (SDS) was employed. Key validation parameters such as linearity, precision, limits of detection (LOD), and limits of quantification (LOQ) were determined. The use of PAEKI for the electrophoretic determination of free THs demonstrates significant potential for monitoring these hormones in real urine samples due to its high sensitivity and efficiency.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。