The generation of free radicals and oxidative stress has been linked to several neurodegenerative diseases including Parkinson's disease, Alzheimer's disease, Huntington's disease, and Amyotrophic lateral sclerosis. The use of free radical scavenging molecules for the reduction of intracellular reactive oxygen species is one of the strategies used in the clinical management of neurodegeneration. Fungal secondary metabolism is a rich source of novel molecules with potential bioactivity. In the current study, bikaverin was extracted from Fusarium oxysporum f. sp. lycopersici and its structural characterization was carried out. Further, we explored the protective effects of bikaverin on oxidative stress and its anti-apoptotic mechanism to attenuate H2O2-induced neurotoxicity using human neuroblastoma SH-SY5Y cells. Our results elucidate that pretreatment of neurons with bikaverin attenuates the mitochondrial and plasma membrane damage induced by 100 µM H2O2 to 82 and 26% as evidenced by MTT and LDH assays. H2O2 induced depletion of antioxidant enzyme status was also replenished by bikaverin which was confirmed by Realtime Quantitative PCR analysis of SOD and CAT genes. Bikaverin pretreatment efficiently potentiated the H2O2-induced neuronal markers, such as BDNF, TH, and AADC expression, which orchestrate the neuronal damage of the cell. The H2O2-induced damage to cells, nuclear, and mitochondrial integrity was also restored by bikaverin. Bikaverin could be developed as a preventive agent against neurodegeneration and as an alternative to some of the toxic synthetic antioxidants.
Neuroprotective effects of bikaverin on H2O2-induced oxidative stress mediated neuronal damage in SH-SY5Y cell line.
阅读:10
作者:Nirmaladevi D, Venkataramana M, Chandranayaka S, Ramesha A, Jameel N M, Srinivas C
| 期刊: | Cellular and Molecular Neurobiology | 影响因子: | 4.800 |
| 时间: | 2014 | 起止号: | 2014 Oct;34(7):973-85 |
| doi: | 10.1007/s10571-014-0073-6 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
