Strategies for rapid production of crystallization quality coatomer WD40 domains.

阅读:5
作者:Dey Debajit, Hasan S Saif
The vesicular secretion of soluble cargo proteins from the endoplasmic reticulum (ER) is accompanied by the export of ER-resident membrane proteins that are co-packaged in secretory vesicles. The cytosolic coatomer protein complex I (COPI) utilizes the N-terminal WD40 domains of α-COPI and β'-COPI subunits to bind these membrane protein "clients" for ER retrieval. These "αWD40" and "β'WD40" domains are structural homologs that demonstrate distinct selectivity for client proteins. However, elucidation of the atomic-level principles of coatomer-client interactions has been challenging due to the tendency of αWD40 domain to undergo aggregation during expression and purification. Here we describe a rapid recombinant production strategy from E. coli, which substantially enhances the quality of the purified αWD40 domain. The αWD40 purification and crystallization are completed within one day, which minimizes aggregation losses and yields a 1.9 à resolution crystal structure. We demonstrate the versatility of this strategy by applying it to purify the β'WD40 domain, which yields crystal structures in the 1.2-1.3 à resolution range. As an alternate recombinant production system, we develop a cost-effective strategy for αWD40 production in human Expi293 cells. Finally, we suggest a roadmap to simplify these protocols further, which is of significance for the production of WD40 mutants prone to rapid aggregation. The WD40 production strategies presented here are likely to have broad applications because the WD40 domain represents one of the largest families of biomolecular interaction modules in the eukaryotic proteome and is critical for trafficking of host as well as viral proteins such as the SARS-CoV-2 spike protein.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。