Statistical quantification of confounding bias in machine learning models.

阅读:4
作者:Spisak, Tamas
BACKGROUND: The lack of nonparametric statistical tests for confounding bias significantly hampers the development of robust, valid, and generalizable predictive models in many fields of research. Here I propose the partial confounder test, which, for a given confounder variable, probes the null hypotheses of the model being unconfounded. RESULTS: The test provides a strict control for type I errors and high statistical power, even for nonnormally and nonlinearly dependent predictions, often seen in machine learning. Applying the proposed test on models trained on large-scale functional brain connectivity data (N= 1,865) (i) reveals previously unreported confounders and (ii) shows that state-of-the-art confound mitigation approaches may fail preventing confounder bias in several cases. CONCLUSIONS: The proposed test (implemented in the package mlconfound; https://mlconfound.readthedocs.io) can aid the assessment and improvement of the generalizability and validity of predictive models and, thereby, fosters the development of clinically useful machine learning biomarkers.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。