Pedestrian detection in coal mines is crucial for video surveillance systems. Limited computational resources pose challenges to deploying large models, affecting detection efficiency. To address this, we propose a lightweight pedestrian in coal mine detector with multi-level feature fusion. Our approach integrates the backbone network with coordinate attention, introducing a bidirectional feature pyramid network and a thin neck technique to enhance multi-scale detection capability while reducing computational load. We also employ regression loss with a dynamic focus mechanism for bounding box regression to minimize model errors. The Linkage Channel Pruning method enforces channel-level sparsity on the designed detector to achieve network slimming and secondary lightweight development. Results on a proprietary dataset demonstrate our method's parameters (0.61 M), computational load (2.0 GFLOPs), model size (1.48 MB), detection accuracy (0.966), and inference time (2.1 ms). Compared to the baseline, our method achieves a 4.96âÃâreduction in parameters, a 4.05âÃâreduction in computational load, a 4.02âÃâreduction in model size, a 59.62% reduction in inference time, and a 1.2% accuracy improvement. Experimental validation on proprietary and public datasets confirms that our method exhibits state-of-the-art lightweight performance, accuracy, and real-time capability, demonstrating significant potential in practical engineering applications. The insights gained provide technical references and real-time accident prevention for coal mine video surveillance systems.
A lightweight coal mine pedestrian detector for video surveillance systems with multi-level feature fusion and channel pruning.
阅读:4
作者:Xie Bei Jing, Li Heng, Luan Zheng, Li Xiao Xu, Lei Zhen
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2025 | 起止号: | 2025 Feb 17; 15(1):5757 |
| doi: | 10.1038/s41598-025-87157-7 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
