A bearing fault diagnosis method based on hybrid artificial intelligence models.

阅读:4
作者:Sun Lijie, Tao Xin, Lu Yanping
The working state of rolling bearing severely affects the performance of industrial equipment. Addressing the issue of that the difficulty of incipient weak signals feature extraction influences the rolling bearing diagnosis accuracy, an efficient bearing fault diagnostic technique, a proposition is forwarded for hybrid artificial intelligence models, which integrates Improved Harris Hawks Optimization (IHHO) into the optimization of Deep Belief Networks and Extreme Learning Machines (DBN-ELM). The process employs Maximum Second-order Cyclostationary Blind Deconvolution (CYCBD) to filter out noise from the vibration signals emitted by bearings; secondly, considering the issue with the conventional Harris Hawks Optimization (HHO) algorithm which tends to prematurely converge to local optima, the differential evolution mutation operator is introduced and the escape energy factor is improved from linear to nonlinear in IHHO; then, a double-layer network model based on DBN-ELM is proposed, to avoid the number of hidden layer nodes of DBN from human experience interference, and IHHO is used to optimize DBN structure, which is denoted as IHHO-DBN-ELM method; with the optimal structure is obtained by using a combined IHHO optimized DBN and ELM; in conclusion, the proposed IHHO-DBN-ELM approach is applied to the bearing fault detection using the Western Reserve University's bearing fault dataset. The outcome of the experiments demonstrates that IHHO-DBN-ELM technique successfully extracts fault characteristics from the raw time-domain signals, thereby offering enhanced diagnostic accuracy and superior generalization capabilities.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。